Let the region R be the area enclosed by the function

(

)
=

3
f(x)=x
3
and

(

)
=
4

.
g(x)=4x. If the region R is the base of a solid such that each cross section perpendicular to the

x-axis is a rectangle whose height is half the length of its base in the region R, find the volume of the solid. You may use a calculator and round to the nearest thousandth.