Proof that if T, = 8(X1,...,x.) is a Bayes estimator having constant risk (i.e. AS. (a) (5 Marks) R(0;8) is independent of 6), then T, is a minimax estimator. How does one determine the minimax estimator of the unknown parameter 0 using (2 Marks) the Bayes' estimator of e? (c) Given a random sample X,..., X, from X - B(1;8) with 0<0<1. But e - Beta(2,a). Find the Bayes' estimator of O and hence the minimax (5 Marks) estimator of 8.