Consider the following public good provision game. Players can choose either to contribute (C) or not contribute (NC) to the public good. If someone contributes, both will be able to consume the good, which worths v dollars and is publicly known. The player i's cost to contribute is Cᵢ, which is private information. It is common knowledge that C₁,C₂ are drawn from a uniform distribution with support (Cₗ, Cₕ]. Assume v > Cₕ. C NC
C ᴠ - C₁ . ᴠ - C₂ ᴠ - C₁, ᴠ
(a) Suppose player 2 contributes if C₂ < C*₂, where C*₂ is a cutoff point. What is the expected payoff for player 1 to contribute and not contribute? What would player 1 do when C₁ is low? (b) Suppose player 1 also employ a cutoff strategy. Solve for the cutoff point (C*₁, C*₂). What is the Bayesian Nash equilibrium of the game?