Answer:
[tex]F=1.98\times 10^{20}\ N[/tex]
Explanation:
Given that,
The mass of a Moon, [tex]M_m=7.35\times 10^{22}\ kg[/tex]
The mass of the Earth, [tex]M_e=5.98\times 10^{24}\ kg[/tex]
The moon's mean orbit distance around the earth is, [tex]r=3.84\times 10^8\ m[/tex]
We need to find the gravitational force exerted on the moon by the Earth.
The formula of gravitational force is given by :
[tex]F=G\dfrac{M_mM_e}{r^2}\\\\F=6.67\times 10^{-11}\times \dfrac{7.35\times 10^{22}\times 5.98\times 10^{24}}{(3.84\times 10^8)^2}\\\\F=1.98\times 10^{20}\ N[/tex]
So, the required force is [tex]1.98\times 10^{20}\ N[/tex].