Respuesta :
y = (x + 3)² + 53
y = (x + 3)(x + 3) + 53
y = (x(x + 3) + 3(x + 3)) + 53
y = (x(x) + x(3) + 3(x) + 3(3)) + 53
y = (x² + 3x + 3x + 9) + 53
y = (x² + 6x + 9) + 53
y = x² + 6x + 9 + 53
y = x² + 6x + 62
The answer is B.
y = (x + 3)(x + 3) + 53
y = (x(x + 3) + 3(x + 3)) + 53
y = (x(x) + x(3) + 3(x) + 3(3)) + 53
y = (x² + 3x + 3x + 9) + 53
y = (x² + 6x + 9) + 53
y = x² + 6x + 9 + 53
y = x² + 6x + 62
The answer is B.
Answer:
Option B is correct
[tex]y=x^2+6x + 62[/tex]
Step-by-step explanation:
The standard form for the quadratic equation is given by:
[tex]y = Ax^2+Bx+C[/tex]
As per the statement:
The vertex form of the equation of a parabola is:
[tex]y = (x + 3)^2 + 53[/tex]
Using the identity rule:
[tex](a+b)^2 = a^2+b^2+2ab[/tex]
then;
[tex]y = x^2 + 3^2+6x + 53[/tex]
⇒[tex]y = x^2 + 9+6x + 53[/tex]
⇒[tex]y=x^2+6x + 62[/tex]
Therefore, the standard form of the equation is;
[tex]y=x^2+6x + 62[/tex]