[tex]\bf \begin{array}{ccccccccc}
&&x_1&&y_1&&x_2&&y_2\\
% (a,b)
&&(~ 2 &,& 3~)
% (c,d)
&&(~ 4 &,& -3~)
\end{array}
\\\\\\
% slope = m
slope = m\implies
\cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-3-3}{4-2}\implies \cfrac{-6}{2}\implies \cfrac{-3}{1}[/tex]
now, a line perpendicular to that one, will have a "negative reciprocal" slope, thus
[tex]\bf \textit{perpendicular, negative-reciprocal slope for}\quad \cfrac{-3}{1}\\\\
negative\implies +\cfrac{3}{ 1}\qquad reciprocal\implies +\cfrac{ 1}{3}\implies \cfrac{1}{3}[/tex]