Respuesta :

[tex]\bf \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ 2 &,& 3~) % (c,d) &&(~ 4 &,& -3~) \end{array} \\\\\\ % slope = m slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-3-3}{4-2}\implies \cfrac{-6}{2}\implies \cfrac{-3}{1}[/tex]

now, a line perpendicular to that one, will have a "negative reciprocal" slope, thus

[tex]\bf \textit{perpendicular, negative-reciprocal slope for}\quad \cfrac{-3}{1}\\\\ negative\implies +\cfrac{3}{ 1}\qquad reciprocal\implies +\cfrac{ 1}{3}\implies \cfrac{1}{3}[/tex]