Respuesta :

x = 10 1n (15)

In decimal form it's 27.0805201
Hey Jspjulie, 

Lets solve your problem step by step. 

The question we are encountering isHow do I solve : [tex]4e^{0.1x}=60[/tex]. 

        The first step is to divide both sides by 4

[tex]\dfrac{4e^{0.1x}}{4}=\dfrac{60}{4}[/tex] 

       Now we simplify the fraction

[tex]e^{0.1x}=15[/tex] 

 [tex]\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)[/tex] 

[tex]\ln \left(e^{0.1x}\right)=\ln \left(15\right)[/tex]

Now we have to apply the log rule: [tex]\log _a\left(x^b\right)=b\cdot \log _a\left(x\right)[/tex] 

[tex]0.1x\ln \left(e\right)=\ln \left(15\right)[/tex] 

     Now we simplify 

[tex]0.1x=\ln \left(15\right)[/tex] 

    Finally, we reach our answer 

[tex]x=\ln \left(15\right)\cdot \:10[/tex] 

Hope this helps, 

      AnthrαX