Part A: Factor 5x2a2 − 19xa2 − 4a2. Show your work. (4 points) Part B: Factor x2 + 14x + 49. Show your work. (3 points) Part C: Factor x2 − 100. Show your work. (3 points)

Respuesta :

Part A:
 
For this case we have the following polynomial:
 [tex]5x ^ 2a ^ 2 - 19xa ^ 2 - 4a ^ 2 [/tex]
 First we make a common factor a^2:
 We have then:
 [tex]a ^ 2 (5x ^ 2 - 19x - 4) [/tex]
 From here, we can factor the quadratic expression into parentheses.
 We have then:
 [tex]a ^ 2 ((5x + 1) (x-4)) [/tex]
 Answer:
 
[tex]a ^ 2 ((5x + 1) (x-4)) [/tex]

 Part B:
 
For this case we have the following polynomial:
 [tex]x^2 + 14x + 49 [/tex]
 We factor the expression.
 To do this, we write two numbers that added are 14 and multiplied are 49.
 We have then:
 [tex](x + 7) (x + 7) [/tex]
 Answer:
 
[tex](x + 7) (x + 7) [/tex]

 Part C:
 For this case we have the following polynomial:
 [tex]x ^ 2 -100 [/tex]
 We observe that we have a binomial, therefore, we must factor.
 To do this, we write two numbers that added are 0 and multiplied are -100.
 We have then:
 [tex](x + 10) (x-10)[/tex]
 Answer:
 
[tex](x + 10) (x-10)[/tex]