Respuesta :

Answer:

[tex]AC=11\frac{\sqrt{3}}{3}\ units[/tex]  or  [tex]AC=6.35\ units[/tex]

Step-by-step explanation:

we know that

In the right triangle ABC

AC and BC are the legs of the triangle

AB is the hypotenuse

see the attached figure to better understand the problem

[tex]tan(30\°)=\frac{AC}{BC}[/tex]

[tex]tan(30\°)=\frac{\sqrt{3}}{3}[/tex]

so

[tex]\frac{\sqrt{3}}{3}=\frac{AC}{BC}[/tex]

[tex]AC=\frac{\sqrt{3}}{3}BC[/tex]

substitute the value of BC

[tex]AC=\frac{\sqrt{3}}{3}(11)[/tex]

[tex]AC=11\frac{\sqrt{3}}{3}\ units[/tex]

[tex]AC=6.35\ units[/tex]

Ver imagen calculista

Answer:

11sqrt3/3

Step-by-step explanation: