Using the law of sines, we can write the formula as:
[tex] \frac{a}{sin(A)}= \frac{b}{sin(B)} \\ \\
b= \frac{a*sin(B)}{sin(A)} [/tex]
We are given the values of a, A and B. Using these in the above formula, we get:
[tex]b= \frac{36*sin(78)}{sin(34)} \\ \\
b=62.97[/tex]
Rounding to nearest integer, the length of side b will be 63.
So, option C gives the correct answer