Respuesta :
[tex]\bf tan(x) cos(x)=sin(x)
\\\\\\
\cfrac{sin(x)}{{cos(x)}}\cdot {cos(x)}\implies sin(x)[/tex]
Answer:
The basic trigonometric identity you would use is [tex]\tan \left(x\right)=\frac{\sin \left(x\right)}{\cos \left(x\right)}[/tex]
Step-by-step explanation:
To show that this identity is true you must:
- Manipulate left side [tex]\tan \left(x\right)\cos \left(x\right)[/tex]
Use this basic trigonometric identity [tex]\tan \left(x\right)=\frac{\sin \left(x\right)}{\cos \left(x\right)}[/tex]
[tex]\cos \left(x\right)\tan \left(x\right)=\cos \left(x\right)\frac{\sin \left(x\right)}{\cos \left(x\right)}[/tex]
- Simplify
[tex]\cos \left(x\right)\frac{\sin \left(x\right)}{\cos \left(x\right)}=\sin \left(x\right)[/tex]
We showed that the two sides could take the same form.