Respuesta :
51.8, 53.6, 54.7, 51.9, 49.3
the standard deviation of the data set will be found as follows:
Var=∑(x-μ)²/(n)
μ-mean
μ=(51.8+53.6+54.7+51.9+49.3)/5
μ=261.3/5=52.26
Next:
∑(x-μ)²=(51.8-52.26)²+(53.6-52.26)²+(54.7-52.26)²+(51.9-52.26)²+(49.3-52.26)²
∑(x-μ)²=16.852
thu
Var(x)=16.852/(5)=3.3704
Hence the standard deviation will be:
σ=√3.3704=1.835865~1.8
Answer: D] 1.8
the standard deviation of the data set will be found as follows:
Var=∑(x-μ)²/(n)
μ-mean
μ=(51.8+53.6+54.7+51.9+49.3)/5
μ=261.3/5=52.26
Next:
∑(x-μ)²=(51.8-52.26)²+(53.6-52.26)²+(54.7-52.26)²+(51.9-52.26)²+(49.3-52.26)²
∑(x-μ)²=16.852
thu
Var(x)=16.852/(5)=3.3704
Hence the standard deviation will be:
σ=√3.3704=1.835865~1.8
Answer: D] 1.8