Answer:
[tex]m_{AD}=\frac{2k}{2j-b}[/tex]
[tex]m_{BC}=\frac{2k}{2j-b}[/tex]
[tex]m_{AB}=0[/tex]
[tex]m_{DC}=0[/tex]
AD║BC
AB║DC
Step-by-step explanation:
The vertices of parallelogram are A(0,0), B(b,0), C(2j,2k) and D(2j-b,2k).
If a line passes though two points, then the slope of the line is
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Using this formula the slope of AD is
[tex]m_{AD}=\frac{2k-0}{2j-b}=\frac{2k}{2j-b}[/tex]
Using the above formula the slope of BC is
[tex]m_{BC}=\frac{2k-0}{2j-b}=\frac{2k}{2j-b}[/tex]
The side AD is parallel to side BC because the slope of two parallel lines are same.
AD║BC
The slope of AB is
[tex]m_{AB}=\frac{0-0}{b-0}=0[/tex]
The slope of DC is
[tex]m_{DC}=\frac{2k-2k}{2j-b-2j}=0[/tex]
The side AB is parallel to side DC because the slope of two parallel lines are same.
AB║DC
Therefore the required answers are [tex]m_{AD}=\frac{2k}{2j-b}[/tex], [tex]m_{BC}=\frac{2k}{2j-b}[/tex], [tex]m_{AB}=0[/tex],[tex]m_{DC}=0[/tex], AD║BC, AB║DC.