Respuesta :

[tex]\bf ~~~~~~~~~~~~ \textit{Amortized Loan Value} \\\\ pymt=P\left[ \cfrac{\frac{r}{n}}{1-\left( 1+ \frac{r}{n}\right)^{-nt}} \right] \\\\\\ ~~~~~~ \begin{cases} P= \begin{array}{llll} \textit{original amount deposited}\\ \end{array}\to &\$146800\\ pymt=\textit{periodic payments}\\ r=rate\to 5.25\%\to \frac{5.25}{100}\to &0.0525\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{monthly, thus twelve} \end{array}\to &12\\ t=years\to &30 \end{cases}[/tex]

[tex]\bf pymt=146800\left[ \cfrac{\frac{0.0525}{12}}{1-\left( 1+ \frac{0.0525}{12}\right)^{-12\cdot 30}} \right] \\\\\\ pymt=146800\left[ \cfrac{0.004375}{1-\left(1.004375\right)^{-360}} \right] \\\\\\ pymt\approx 146800\left[ \cfrac{0.004375}{0.7968815551191}\right]\implies pymt\approx 805.9541545[/tex]