If u(x)=-2x^2+3 and v(x)=1/x what is the range of (u*v)(x) **the picture should help

The range of a function is simply the output values the function can take.
The range of the function [tex]u(v(x))[/tex] is: [tex](-\infty,3)[/tex]
Given
[tex]u(x) = -2x^2 + 3[/tex]
[tex]v(x) = \frac 1x[/tex]
[tex](u\ o\ v)(x)[/tex] can be represented as:
[tex](u\ o\ v)(x) = u(v(x))[/tex]
So, we have:
[tex]u(x) = -2x^2 + 3[/tex]
Substitute v(x) for x
[tex]u(v(x)) = -2(v(x))^2 + 3[/tex]
Substitute [tex]\frac 1x[/tex] for v(x)
[tex]u(v(x)) = -2(\frac 1x)^2 + 3[/tex]
Open brackets
[tex]u(v(x)) = -\frac{2}{x^2} + 3[/tex]
Take LCM
[tex]u(v(x)) = \frac{-2 + 3x^2}{x^2}[/tex]
I've added an attachment of function u(v(x)) to determine its range.
From the attached graph, we have the following observations
This implies that, the range of the function is: [tex](-\infty,3)[/tex] or [tex]-\infty < x < 3[/tex]
Read more about range at:
https://brainly.com/question/1632425