Respuesta :
The given functions are
s(x) = 2 - x²
t(x) = 3x
By multiplying the both functions
∴ (s * t ) (x) = (2-x²) * (3x) = 6x - 3x³
To find (s * t ) (-7), substitute with x = -7 in the resultant function of the multiplication
∴ (s * t ) (-7) = 6 * (-7) - 3* (-7)³ = 987
s(x) = 2 - x²
t(x) = 3x
By multiplying the both functions
∴ (s * t ) (x) = (2-x²) * (3x) = 6x - 3x³
To find (s * t ) (-7), substitute with x = -7 in the resultant function of the multiplication
∴ (s * t ) (-7) = 6 * (-7) - 3* (-7)³ = 987
For this case we have the following functions:
[tex]s (x) = 2-x ^ 2 t (x) = 3x[/tex]
When multiplying the functions we have:
[tex](s * t) (x) = s (x) * t (x) [/tex]
Substituting values we have:
[tex](s * t) (x) = (2-x ^ 2) * (3x) [/tex]
Rewriting we have:
[tex](s * t) (x) = 6x - 3x ^ 3 [/tex]
We evaluate the new function for x = -7
[tex](s * t) (-7) = 6 (-7) - 3 (-7) ^ 3 (s * t) (-7) = -42 - 3 (-343) (s * t) (-7) = -42 + 1029 (s * t) (-7) = 987[/tex]
Answer:
A value that is equivalent to (s • t) (-7) is:
[tex](s * t) (-7) = 987[/tex]
[tex]s (x) = 2-x ^ 2 t (x) = 3x[/tex]
When multiplying the functions we have:
[tex](s * t) (x) = s (x) * t (x) [/tex]
Substituting values we have:
[tex](s * t) (x) = (2-x ^ 2) * (3x) [/tex]
Rewriting we have:
[tex](s * t) (x) = 6x - 3x ^ 3 [/tex]
We evaluate the new function for x = -7
[tex](s * t) (-7) = 6 (-7) - 3 (-7) ^ 3 (s * t) (-7) = -42 - 3 (-343) (s * t) (-7) = -42 + 1029 (s * t) (-7) = 987[/tex]
Answer:
A value that is equivalent to (s • t) (-7) is:
[tex](s * t) (-7) = 987[/tex]