Respuesta :

By definition the average rate of change is given by:
 
[tex]AVR = \frac{f(x2) - f(x1)}{x2-x1} [/tex]
 We have the following function:
 
[tex]f(x) =17 - x^2[/tex]
 We evaluate the function for the given interval:
 For X = 1:
 [tex]f(1) =17 - 1^2[/tex]
 [tex]f(1) =17 - 1[/tex]
 [tex]f(1) =16[/tex]
 For X = 5:
 [tex]f(5) =17 - 5^2[/tex]
 [tex]f(5) =17 - 25[/tex]
 [tex]f(5) =-8[/tex]
 Then, replacing values we have:
 [tex]AVR = \frac{-8 - 16}{5-1} [/tex]
 [tex]AVR = \frac{-24}{4} [/tex]
 [tex]AVR = -6 [/tex]
 Answer:
 the average rate of change in f(x) over the interval [1,5] is:
 
[tex]AVR = -6 [/tex]