For this case we have the following functions:
[tex]u (x) = x ^ 5 -x ^ 4 + x ^ 2
v (x) = -x ^ 2[/tex]
Dividing the functions we have:
[tex](u / v) (x) = \frac{u(x)}{v(x)} [/tex]
Substituting we have:
[tex](u / v) (x) = \frac{x^5 -x^4 + x^2}{-x^2} [/tex]
Rewriting we have:
[tex](u / v) (x) = \frac{-x^5 + x^4 - x^2}{x^2} [/tex]
[tex](u / v) (x) = \frac{-x^5}{x^2} + \frac{x^4}{x^2} + \frac{- x^2}{x^2} (u / v) (x) = -x^3 + x^2 - 1[/tex]
Answer:
An expression that is equivalent to (u/v) (x) is:
[tex](u / v) (x) = -x^3 + x^2 - 1[/tex]