Respuesta :
[tex]\bf \textit{area of a circle}\\\\
A=\pi r^2~~
\begin{cases}
r=radius\\
-----\\
A=200.96
\end{cases}\implies 200.96=\pi r^2
\\\\\\
\cfrac{200.96}{\pi }=r^2\implies \boxed{\sqrt{\cfrac{200.96}{\pi }}=r}
\\\\\\
\textit{circumference of a circle}\\\\
C=2\pi r\qquad \qquad \implies C=2\pi \left( \boxed{\sqrt{\cfrac{200.96}{\pi }}} \right)
\\\\\\
C\approx 50.2527396134939[/tex]
the answer is 50.24
A = πr²
200.96 sq in = 3.14 X r²
200.96 sp in/ 3.14 = 3. 14 X r²/ 3.14
64 sq in = r²
√64 sq in = √r²
8 in = r (the pizza has a radius of 8 in)
C = 2π X r
C = 2 X 3.14 X 8
C = 50.24 in (answer)
hope this helps