Functions can be represented on graphs and tables.
The values of A, B and C are: 1/4, 1 and 4
The functions are given as:
[tex]\mathbf{f(x) = 4^x}[/tex]
[tex]\mathbf{g(x) = 4^{\frac 12x}}[/tex]
The value of A
x = -2, when g(x) = A.
So, we have:
[tex]\mathbf{g(-2) = 4^{\frac 12 \times -2} = A}[/tex]
[tex]\mathbf{4^{-1} = A}[/tex]
Express as a fraction
[tex]\mathbf{\frac 14 = A}[/tex]
So, we have:
[tex]\mathbf{A = \frac 14 }[/tex]
The value of B
x = 0, when g(x) = B.
So, we have:
[tex]\mathbf{g(0) = 4^{\frac 12 \times 0} = B}[/tex]
[tex]\mathbf{4^{0} = B}[/tex]
[tex]\mathbf{1 = B}[/tex]
So, we have:
[tex]\mathbf{B = 1}[/tex]
The value of C
x = 2, when g(x) = C.
So, we have:
[tex]\mathbf{g(2) = 4^{\frac 12 \times 2} = C}[/tex]
[tex]\mathbf{ 4^1 = C}[/tex]
[tex]\mathbf{4 = C}[/tex]
So, we have:
[tex]\mathbf{C = 4}[/tex]
Hence, the values of A, B and C are: 1/4, 1 and 4
Read more about functions at:
https://brainly.com/question/14418346