let v1=(-6,4) and v2=(-3,6) compute the following.
a. V1*V2
b.The angle between |v1| and |V2|.
c.The scaler projection of v1 onto v2
d. the projection of v1 onto v2

Respuesta :

a. We assume you want the dot product. That is the sum of the products of the corresponding components.

... V1•V2 = (-6)(-3) + (4)(6) = 18 + 24 = 42


b. V1•V2 = |V1|·|V2|·cos(α)

... α = arccos(V1•V2/(|V1|·|V2|)

... α = arccos(42/√(((-6)²+4²)((-3)²+6²)))

... α = arccos(42/√2340)

... α ≈ 29.74°


c. The scalar projection of V1 onto V2 is the dot product of V1 with the unit vector in the V2 direction.

... V1•V2/|V2| = 42/√45 = 42/(3√5) = (14/5)√5


d. The projection of V1 onto V2 is the result of part c multiplied by the unit vector in the direction of V2.

... projection of V1 onto V2 = (14/5)√5·(-3, 6)/(3√5) = (14/5)(-1, 2) = (-14/5, 28/5)

Ver imagen sqdancefan

a) The Dot Product is equal to 6.

b) The Angle between the two Vectors is approximately 82.875°.

c) The Scalar Projection of [tex]\vec v_{1}[/tex] onto [tex]\vec v_{2}[/tex] is approximately 0.894.

d) The Projection of [tex]\vec v_{1}[/tex] onto [tex]\vec v_{2}[/tex] is [tex]\vec v_{1, \vec v_{2}} = (-2.683, 5.367)[/tex].

Given two Vectors of the form [tex](x,y)[/tex], the Dot Product between two Vectors is defined by:

[tex]\vec v_{1} \,\bullet\,\vec v_{2} = \|\vec v_{1}\|\cdot \|\vec v_{2}\|\cdot \cos \theta = x_{1}\cdot x_{2} + y_{1}\cdot y_{2}[/tex] (1)

Where:

[tex]\|\vec v_{1}\|[/tex], [tex]\|\vec v_{2}\|[/tex] - Norm of the vectors.

[tex]\theta[/tex] - Angle between the two vectors, in sexagesimal degrees.

The Norm is defined by Pythagorean Theorem.

[tex]r = \sqrt{x^{2}+y^{2}}[/tex] (2)

The Projection of [tex]\vec v_{1}[/tex] onto [tex]\vec v_{2}[/tex] is:

[tex]\vec v_{1, \vec v_{2}} = \frac{\vec v_{1}\,\bullet \,\vec v_{2}}{\|\vec v_{2}\|^{2}}\cdot \vec v_{2}[/tex] (3)

Where the Scalar Projection is:

[tex]\|\vec v_{1,\vec v_{2}}\| = \|\vec v_{1}\|\cdot \cos \theta[/tex]

a) If we know that [tex]\vec v_{1} = (-6, 4)[/tex] and [tex]\vec v_{2} = (-3, 6)[/tex], then the Dot Product is:

[tex]\vec v_{1}\,\bullet\,\vec v_{2} = (-6)\cdot (-3) + (4)\cdot (6)[/tex]

[tex]\vec v_{1} \,\bullet \,\vec v_{2} = 6[/tex]

The Dot Product is equal to 6.

b) The angle between [tex]\vec v_{1}[/tex] and [tex]\vec v_{2}[/tex] is calculated from (1):

[tex]\theta = \cos^{-1} \frac{\vec v_{1}\,\bullet\,\vec v_{2}}{\|\vec v_{1}\|\cdot\|\vec v_{1}\|}[/tex]

If we know that [tex]\vec v_{1} = (-6, 4)[/tex] and [tex]\vec v_{2} = (-3, 6)[/tex], then the Angle between the two Vectors is:

[tex]\|v_{1}\| = \sqrt{(-6)^{2}+4^{2}}[/tex]

[tex]\|\vec v_{1}\| \approx 7.211[/tex]

[tex]\|\vec v_{2}\| = \sqrt{(-3)^{2}+6^{2}}[/tex]

[tex]\|\vec v_{2}\| \approx 6.708[/tex]

[tex]\theta = \cos^{-1} \frac{6}{(7.211)\cdot (6.708)}[/tex]

[tex]\theta \approx 82.875^{\circ}[/tex]

The Angle between the two Vectors is approximately 82.875°.

c) If we know that [tex]\|\vec v_{1}\| \approx 7.211[/tex] and [tex]\theta \approx 82.875^{\circ}[/tex], then the Scalar Projection of [tex]\vec v_{1}[/tex] onto [tex]\vec v_{2}[/tex] is:

[tex]\|v_{1,\vec v_{2}}\| = 7.211\cdot \cos 82.875^{\circ}[/tex]

[tex]\|\vec v_{1, \vec v_{2}}\| \approx 0.894[/tex]

The Scalar Projection of [tex]\vec v_{1}[/tex] onto [tex]\vec v_{2}[/tex] is approximately 0.894.

d) If we know that [tex]\vec v_{1} \,\bullet \,\vec v_{2} = 6[/tex], [tex]\|\vec v_{2}\| \approx 6.708[/tex] and  [tex]\vec v_{2} = (-3, 6)[/tex], then the Projection of [tex]\vec v_{1}[/tex] onto [tex]\vec v_{2}[/tex] is:

[tex]\vec v_{1, \vec v_{2}} = \frac{6}{6.708}\cdot (-3, 6)[/tex]

[tex]\vec v_{1, \vec v_{2}} = (-2.683, 5.367)[/tex]

The Projection of [tex]\vec v_{1}[/tex] onto [tex]\vec v_{2}[/tex] is [tex]\vec v_{1, \vec v_{2}} = (-2.683, 5.367)[/tex].

Please see this question related to Dot Product: https://brainly.com/question/9795347

Ver imagen xero099