In Triangle RST, Angle R = 63 degrees, angle T=90 degrees, Side RS =23, side st = 10.4. Which ratios are correct.

csc63=23/rt, sec 63=23/10.4, and cot 27=10.4/RT
csc63=23/rt, sec 27=10.4/23, and cot63=10.4/rt
csc63=23/rt, sec 27= 23/10.4, and cot 63 = rt/10.4
csc63=23/rt, sec 63=10.4/23, and cot27=RT/10.4

Respuesta :

The correct ratios are: cse 27=23/RT, sec 27= 23/10.4 and cot 63 = RT/10.4

In triangle RST, angle T= 90° and angle R= 63°

As the total of all angle in any triangle is 180°, so the measure of the angle S = 180°- (90°+63°)

S= 180°- 153°

S= 27°

According to the rule of trigonometric ratios,

[tex] cse(\theta) = \frac{hypotenuse}{opoosite}\\ \\ sec(\theta)=\frac{hypotenuse}{adjacent} \\ \\ cot(\theta)= \frac{adjacent}{opposite} [/tex]

In respect of angle R (63°), side RS(23) is hypotenuse , ST(10.4) is opposite and RT is adjacent.

So, cse(63°) =[tex] \frac{23}{10.4} [/tex]

sec(63°) = [tex] \frac{23}{RT} [/tex]

cot(63°) = [tex] \frac{RT}{10.4} [/tex]

Now, in respect of angle S(27°), hypotenuse is RS(23), adjacent is ST(10.4) and opposite is RT.

So, cse(27°) = [tex] \frac{23}{RT} [/tex]

sec(27°) = [tex] \frac{23}{10.4} [/tex]

cot(27°) = [tex] \frac{10.4}{RT} [/tex]

Ver imagen Sicista

Answer:

c. on e2020

Step-by-step explanation: