[tex]
(2^8 *3^{-5}*6^0)^{-2} * (3^{-2}/ 2^3)^4 * 2^{28} [/tex]
[tex] \mathrm{Apply\:rule}\:a^0=1,\:a\ne \:0 [/tex]
[tex] 6^0=1 [/tex]
[tex] =2^{28}\left(\frac{3^{-2}}{2^3}\right)^4\left(3^{-5}\cdot \:2^8\cdot \:1\right)^{-2} [/tex]
[tex] \left(2^8\cdot \:3^{-5}\cdot \:1\right)^{-2}=\left(1\cdot \frac{256}{243}\right)^{-2}=\left(\frac{243}{256}\right)^2 [/tex]
[tex] \left(\frac{3^{-2}}{2^3}\right)^4=\frac{1^4}{\left(2^3\cdot \:3^2\right)^4}=\frac{1^4}{3^8\cdot \:2^{12}} [/tex]
[tex] 2^{28}\left(\frac{3^{-2}}{2^3}\right)^4\left(3^{-5}\cdot \:2^8\cdot \:1\right)^{-2}=\frac{243^2\cdot \:1\cdot \:2^{28}}{256^2\cdot \:3^8\cdot \:2^{12}} [/tex]
[tex] =\frac{2^{16}\cdot \:243^2}{3^8\cdot \:256^2} [/tex]
[tex] =\frac{2^{16}\cdot \:3^{10}}{2^{16}\cdot \:3^8} [/tex]
[tex] =3^2 [/tex]
[tex] =9 [/tex]