The perimeter of the parallelogram WXYZ is 2 square root of 26 + _____units.

[tex]|ZW|=|YX|=\sqrt{26}\to2|ZW|=2|YX|=2\sqrt{26}\\\\|ZY|=|WX|=4\to2|ZY|=2|WX|=2\cdot4=8[/tex]
The perimeter of the parallelogram WXYZ is:
[tex]P=2\sqrt{26}+8[/tex]
Answer:
2√26+8 units
Step-by-step explanation:
Perimeter of the parallelogram will be the sum of all the sides of the parallelogram.
Note that the opposite sides of a parallelogram are equal hence
|WZ| = |XY| and |WX| = |ZY|
Given |WZ| = √26, |XY| = √26
To get |WX|, we will take the distance between the point W and X
|WX| = √{(2-(-2)}²+(2-2)²
|WX| = √4²+0²
|WX| = √16
|WX| = 4
Therefore |WX| = |ZY| = 4
Perimeter of the parallelogram = |WZ| + |XY| + |WX| + |ZY|
= √26+√26+4+4
= 2√26+8
The perimeter of the parallelogram is 2√26+8 units