Respuesta :

In similar triangles, the ratios of corresponding sides are equal.

This means

y/6=5/(4+5)

Cross multiply

y=5*6/(4+5)=30/9=10/3 (or 3 1/3)

Answer:

The value of y is [tex]\frac{10}{3}[/tex]. It can be written as [tex]3\frac{1}{3}[/tex].

Step-by-step explanation:

It is given that ΔHAT is similar to ΔCAN.  The corresponding sides of similar triangle are proportional.

Since ΔHAT is similar to ΔCAN, therefore

[tex]\frac{CN}{HT}=\frac{AC}{AH}[/tex]

[tex]\frac{CN}{HT}=\frac{AC}{AC+CH}[/tex]

[tex]\frac{y}{6}=\frac{5}{5+4}[/tex]

[tex]\frac{y}{6}=\frac{5}{9}[/tex]

[tex]y\times 9=5\times 6[/tex]

[tex]y\times 9=30[/tex]

Divide both sides by 9.

[tex]y=\frac{30}{9}[/tex]

[tex]y=\frac{10}{3}[/tex]

[tex]y=3\frac{1}{3}[/tex]

Therefore the value of y is [tex]\frac{10}{3}[/tex]. It can be written as [tex]3\frac{1}{3}[/tex].