Respuesta :
f(x) = 3^x + 10
g(x) = 2x - 4
(f-g)(x) = f(x) - g(x)
(f-g)(x) = 3^x+10 - (2x - 4)
(f-g)(x) = 3^x - 2x + 14
The value of (f-g)(x) is [tex]3^{x} - 2x + 14[/tex] .
How to find the value of the given composite function ?
Given that f(x) = [tex]3^{x} + 10[/tex] and g(x) = [tex]2x - 4[/tex]
We know that (f-g)(x) = f(x) - g(x)
⇒ (f-g)(x) = [tex]3^{x} + 10[/tex] - ([tex]2x - 4[/tex])
⇒ (f-g)(x) = [tex]3^{x} + 10[/tex] - [tex]2x + 4[/tex]
∴ (f-g)(x) = [tex]3^{x} - 2x + 14[/tex]
Thus the value of (f-g)(x) is [tex]3^{x} - 2x + 14[/tex] .
To learn more about composite functions, refer -
brainly.com/question/17256873
#SPJ2