Vx = 20 m/s , vy = 40 m/s . find the vector's direction. express your answer using two significant figures.

Respuesta :

Since both [tex]v_x[/tex] and [tex]v_y[/tex] are positive, the angle the vector [tex]v[/tex] makes with the positive [tex]x[/tex] axis is given by

[tex]\tan^{-1}\dfrac{v_y}{v_x}=\tan^{-1}2\approx63.4^\circ[/tex]

i.e. 63.4 degrees North of East.

Answer:

63° NE

Explanation:

the direction of a vector is calculated using the formula

tanθ=[tex]\frac{v_{y} }{v_{x} }[/tex]

where θ=angle resultant vector makes with the horizontal

vₓ=20m/s

[tex]v_{y}[/tex]=40m/s

tanθ=[tex]\frac{40}{20}[/tex]

tanθ=2

θ=tan⁻¹ 2

θ=63.43°

θ=63° to 2 significant figures

the vectors direction = 63°NE

Ver imagen adetoseen