Respuesta :
Since both [tex]v_x[/tex] and [tex]v_y[/tex] are positive, the angle the vector [tex]v[/tex] makes with the positive [tex]x[/tex] axis is given by
[tex]\tan^{-1}\dfrac{v_y}{v_x}=\tan^{-1}2\approx63.4^\circ[/tex]
i.e. 63.4 degrees North of East.
Answer:
63° NE
Explanation:
the direction of a vector is calculated using the formula
tanθ=[tex]\frac{v_{y} }{v_{x} }[/tex]
where θ=angle resultant vector makes with the horizontal
vₓ=20m/s
[tex]v_{y}[/tex]=40m/s
tanθ=[tex]\frac{40}{20}[/tex]
tanθ=2
θ=tan⁻¹ 2
θ=63.43°
θ=63° to 2 significant figures
the vectors direction = 63°NE
