Respuesta :
Percent error (%)= [tex]\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100[/tex]
Accepted value is true value.
Measured values is calculated value.
In the question given Accepted value (true value) = 63.2 cm
Given Measured(calculated values) = 63.1 cm , 63.0 cm , 63.7 cm
1) Percent error (%) for first measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.1 cm
Percent error (%)= [tex]\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100[/tex]
[tex]Percent error = \frac{\left | 63.2 - 63.1 \right |}{63.2}\times 100[/tex]
[tex]Percent error = \frac{0.1}{63.2}\times 100[/tex]
[tex]Percent error = 0.00158\times 100[/tex]
Percent error = 0.158 %
2) Percent error (%) for second measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.0 cm
Percent error (%)= [tex]\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100[/tex]
[tex]Percent error = \frac{\left | 63.2 - 63.0 \right |}{63.2}\times 100[/tex]
[tex]Percent error = \frac{0.2}{63.2}\times 100[/tex]
[tex]Percent error = 0.00316\times 100[/tex]
Percent error = 0.316 %
3) Percent error (%) for third measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.7 cm
Percent error (%)= [tex]\frac{\left | Accepted value - Measured value \right |}{Accepted value}\times 100[/tex]
[tex]Percent error = \frac{\left | 63.2 - 63.7 \right |}{63.2}\times 100[/tex]
[tex]Percent error = \frac{\left | -0.5 \right |}{63.2}\times 100[/tex]
[tex]Percent error = \frac{(0.5)}{63.2}\times 100[/tex]
[tex]Percent error = 0.00791\times 100[/tex]
Percent error = 0.791 %
Percent error for each measurement is :
63.1 cm = 0.158%
63.0 cm = 0.316%
63.7 cm = 0.791%
