The value for the area A of each figure is given. Write and solve a compound inequality for the value of x in each figure.
Help me plz.

[tex]25.\\A=5\cdot x=5x\\\\35\geq5x\geq25\ \ \ \ |:5\\\\7\geq x\geq5\\\\26.\\A=\dfrac{3\cdot x}{2}=\dfrac{3}{2}x\\\\9\leq\dfrac{3}{2}x\leq12\ \ \ |\cdot\dfrac{2}{3}\\\\3\cdot2\leq x\leq4\cdot2\\\\6\leq x\leq8[/tex]
Length of Rectangle =x units
Breadth of Rectangle= 5 units
Area of Rectangle=Length × Breadth
=5x square units
It is given that , Area lies between 25 and 35.
⇒25≤ 5x ≤ 35
Dividing , the whole Inequality by 5, we get
⇒ 5 ≤ x≤7
⇒Part B
Area of Right Triangle
[tex]=\frac{1}{2}\times \text{Base} \times \text{Height}\\\\=\frac{1}{2}\times 3 \times x\\\\=\frac{3x}{2}\\\\\rightarrow 9\leq \frac{3x}{2}\leq 12\\\\ \text{Multiplying whole inequality by ,2}\\\\\rightarrow18\leq 3x \leq 24\\\\\text{Dividing whole inequality by ,3}\\\\\rightarrow 6\leq x \leq 8[/tex]
⇒6≤x≤8