Respuesta :
Arc Length of a sector with 40° as central angle= 2πR¶/ 360
= 2*3.14*7*40/360
= 4.8 cm
= 5 cm(approx)
= 2*3.14*7*40/360
= 4.8 cm
= 5 cm(approx)
Answer:
The arc length is 4.88 centimeters.
Step-by-step explanation:
Since, the arc length of a circle formula is,
[tex]l = r\times \theta[/tex]
Where, r is the radius of the circle,
[tex]\theta[/tex] is the central angle ( in radians ) by the arc,
Given,
[tex]r=7\text{ cm}[/tex]
[tex]\theta = 40^{\circ}=\frac{\pi}{180}\times 40 = \frac{3.14}{180}\times 40=\frac{125.6}{180}\text{ radians}[/tex]
[tex]\because \pi\text{ radians}=180\text{ degrees}[/tex]
Hence, the arc length would be,
[tex]l=7\times \frac{125.6}{180}=\frac{879.2}{180}=4.8844\approx 4.88\text{ cm}[/tex]