Respuesta :

gmany

Use BEDMAS:

B - Brackets

E - Exponents

D - Division

M - Multiplication

A - Addition

S - Subtraction

[tex] 6-\dfrac{18-3^2}{4+(2-3)}=6-\dfrac{18-9}{4+(-1)}=6-\dfrac{9}{3}=6-3=3 [/tex]

Creati

Here is the equation:

[tex] 6-\frac{18-3^{2}}{4+(2-3)} [/tex]

Use PEMDAS

[tex] Parentheses \\ Exponents \\ Multiplication \\ Division \\ Addition \\ Subtraction [/tex]

Parentheses is first:

[tex] 2-3 = -1 [/tex]

Next is exponents:

[tex] 3^{2} = 3 \times 3 = 9 [/tex]

Your new equation is:

[tex] 6-\frac{18-9}{4+(-1)} [/tex]

Simplify the fraction:

[tex] \frac{18-9}{4+(-1)} = \frac{9}{3} = 3 [/tex]

Your new equation is:

[tex] 6-3 [/tex]

Subtract:

[tex] 6-3=3 [/tex]

Your answer is:

[tex] 6-\frac{18-3^{2}}{4+(2-3)} = \bf 3 [/tex]