how do you solve this?

Use BEDMAS:
B - Brackets
E - Exponents
D - Division
M - Multiplication
A - Addition
S - Subtraction
[tex] 6-\dfrac{18-3^2}{4+(2-3)}=6-\dfrac{18-9}{4+(-1)}=6-\dfrac{9}{3}=6-3=3 [/tex]
Here is the equation:
[tex] 6-\frac{18-3^{2}}{4+(2-3)} [/tex]
Use PEMDAS
[tex] Parentheses \\ Exponents \\ Multiplication \\ Division \\ Addition \\ Subtraction [/tex]
Parentheses is first:
[tex] 2-3 = -1 [/tex]
Next is exponents:
[tex] 3^{2} = 3 \times 3 = 9 [/tex]
Your new equation is:
[tex] 6-\frac{18-9}{4+(-1)} [/tex]
Simplify the fraction:
[tex] \frac{18-9}{4+(-1)} = \frac{9}{3} = 3 [/tex]
Your new equation is:
[tex] 6-3 [/tex]
Subtract:
[tex] 6-3=3 [/tex]
Your answer is:
[tex] 6-\frac{18-3^{2}}{4+(2-3)} = \bf 3 [/tex]