Given: △KPS
m∠P=105°, m∠S=30°
PS=12
Find: PK.

split ∠ P into a ∠45° and a ∠60° with altitude PO. ΔPOK is isosceles and ΔPOS is 30-60-90. PO=6=KO Pk=6√2
The length of PK from the given diagram is 6√2
In order to get the length of PK, we will use the sine rule formula expressed as:
[tex]\frac{PK}{sinm<S} =\frac{PS}{sinm<K}[/tex]
Get the measure of m<K
m<K = 180 - (105+30)
m<K = 180 - 135
m<K = 45degrees
Given
PS = 12
m<S = 30 degrees
Substitute the given parameters into the formula to get PK
[tex]\frac{PK}{sin30} =\frac{12}{sin45}\\\frac{PK}{0.5} = \frac{12}{1/\sqrt{2} }\\\frac{PK}{0.5}=12\sqrt{2} \\PK = \frac{1}{2} \times 12\sqrt{2} \\PK = 6\sqrt{2}[/tex]
Hence the length of PK from the given diagram is 6√2
Learn more here: https://brainly.com/question/9915299