Respuesta :

Answer : The dissociation constant (Ka) = 9.025 × [tex]10^{-4}[/tex]

Solution :  Given,

                Concentration HF solution = 0.100 M

                 % Dissociation = 9.5 %

The equation for dissociation of HF is :

                  [tex]HF \rightleftharpoons H^{+}+ F^{-}[/tex]

The Ka expression for HF is :

[tex]Ka=\frac{[H^{+}][F^{-}]}{[HF]}[/tex]        ............. (1)

Step 1 : we find the [tex][H^{+}][/tex] by using the concentration and % dissociation.

 [tex][H^{+}][/tex] = Concentration HF solution ×  % Dissociation

 [tex][H^{+}][/tex] = 0.100 M × [tex]\frac{9.5}{100}[/tex] = 9.5 × [tex]10^{-3}[/tex] M

Step 2 : For [tex][F^{-}][/tex] , the concentration of  [tex][F^{-}][/tex] is equal to the  [tex][H^{+}][/tex]. From the above equation the stoichiometry of   [tex][F^{-}][/tex] and [tex][H^{+}][/tex] is 1:1.

Therefore,

[tex][F^{-}][/tex] =  [tex][H^{+}][/tex]  = 0.100 M × [tex]\frac{9.5}{100}[/tex] =    =  9.5 × [tex]10^{-3}[/tex] M

         

Now, put all the values in equation (1), we get

[tex]Ka=\frac{(9.5\times10^{-3})\times(9.5\times10^{-3})}{(0.1)}[/tex]

           = 9.025 × [tex]10^{-4}[/tex]