Respuesta :

160 x 243 ^1/5 is equal to 38880^1/5. Find the prme factorization:

[tex]=\left(2^5\cdot \:3^5\cdot \:5\right)^{\frac{1}{5}}[/tex]

Then, follow the rule: a x b^c = a^c b^c

[tex]=5^{\frac{1}{5}}\left(2^5\right)^{\frac{1}{5}}\left(3^5\right)^{\frac{1}{5}}[/tex]

Apply the rule [tex]a^m^{\frac{1}{n}}=a^{\frac{m}{n}}[/tex]

[tex]2^5^{\frac{1}{5}}=2^{\frac{5}{5}}=2.



So far the equation should be 2\cdot \:5^{\frac{1}{5}}\left(3^5\right)^{\frac{1}{5}}.


Apply the same rule for the term \left(3^5\right)^{\frac{1}{5}}:

3^5^{\frac{1}{5}}=3^{\frac{5}{5}}=3


=2\cdot \:3\cdot \:5^{\frac{1}{5}}


Last, refine: =6\cdot \:5^{\frac{1}{5}}[/tex]

For A: the decimal form 'd be 8.27838...

For D: the decimal form'd be 6.89865...

The answer is A. The expression is equal to 8.27838...  like option A.