Respuesta :

Given: ABCD ∥gram,

BK ⊥ AD , AB ⊥ BD

AB=6, AK=3

Find: m∠A, BK

To proof

  as given BK ⊥ AD

thus ΔABK is a right triangle.

thus by using the pythagoras theorem

we have

AB² = BK² + AK²

BK²  = AB ²- AK²

     = 6² - 3²

     = 36 - 9

     = 27

Hence

BK = [tex]3\sqrt{3}[/tex] unit

Now find the value  m∠A

by using the trignometric function

FORMULA

cosA = [tex]\frac{BASE}{HYPOTENUSE}[/tex]

cosA = [tex]\frac{3}{6}[/tex]

       = [tex]\frac{1}{2}[/tex]

m∠A = 60°

hence proved


 

Ver imagen JackelineCasarez