Respuesta :

g(f(x))=g(2x+1)= (2x+1)∧2-7=4x∧2+4x+1-7=4x∧2+4x-6

Good luck!!!

Answer:

[tex](\frac{g}{f})(x)=\frac{x^2-7}{2x+1}[/tex].

Step-by-step explanation:

We have been given two functions as: [tex]f(x)=2x+1\text{ and } g(x)=x^2-7[/tex]. We are asked to find [tex](\frac{g}{f})(x)[/tex].

By the definition of composite function [tex](\frac{g}{f})(x)=\frac{g(x)}{f(x)}[/tex].

Upon substituting [tex]f(x)=2x+1\text{ and } g(x)=x^2-7[/tex] in our equation, we will get:

[tex](\frac{g}{f})(x)=\frac{x^2-7}{2x+1}[/tex]

We cannot further simplify our given equation, therefore, [tex](\frac{g}{f})(x)=\frac{x^2-7}{2x+1}[/tex] would be our answer.