Respuesta :

solution:

[tex]the vartical element has hight equal to the difference between the parabola and x-axis with width dx.\\

\frac{A}{4}=\int [(upper function)-(lower function)]dx\\

upper function y=c^2-16x^2\\

lower function y=0\\[/tex]

[tex]\frac{A}{4}=\int (c^2-16x^2)dx\\

integrate from zero to \frac{c}{4} and remember, A=18\\

\frac{18}{4}=c^2x-(\frac{16}{3})x^3,evaluated from zero to \frac{c}{4}\\

\frac{18}{4}=c^2(\frac{c}{4})-(\frac{16}{3})\int \int (\frac{c^3}{64})\\

\frac{18}{4}=\frac{c^3}{4}-\frac{c^3}{12}\\

\frac{18}{4}=\frac{3c^3}{12}-\frac{c^3}{12}\\

\frac{18}{4}=\frac{c^3}{6}\\

\frac{108}{4}=c^3\\

27=c^3\\

c=3\\[/tex]

[tex]we eveluated the portion of the area lying in the second quadrant, c whould have been -3\\

c=3,-3\\

To check, evaluate the area of half the region, integrating a vertical slide between 9-16x^2 and y=16x^2-9\\

\frac{A}{2}=\int [(upper function)-(lower function)]dx\\

evaluated from zero to \frac{3}{4}\\

\frac{18}{2}=\int [(9-16x^2)-(16x^2-9)]dx\\

9=\int [18-32x^2]dx\\[/tex]

[tex]9=18x-(\frac{32}{3})x^3,evaluated from zero to \frac{3}{4}\\

9=\frac{54}{4}-\frac{9}{2}\\

9=\frac{27}{2}-\frac{9}{2}\\

9=\frac{27-9}{2}\\

9=\frac{18}{2}[/tex]