PLEASE HELP, I HAVE TO PASS!!!!!!

Position Value of Term
1 7
2 10
3 13
4 16
5 19
6 22

Which expression gives the number in the nth position in the sequence?
A) 2n - 2
B) 3n + 4
C) 4n - 1
D) 5n

Respuesta :

3n+4
3(3)+4
9+4
13
 is the B). 

Answer:

Option B is correct

3n+4[/tex]

Step-by-step explanation:

The nth term for the arithmetic sequence is given by:

[tex]a_n = a_1 +(n-1)d[/tex]              ....[1]

where,

[tex]a_n[/tex] is the nth position

n is the number of term

[tex]a_1[/tex] is the first term and

d is the common difference.

Given the table:

Position(n)  Value of Term([tex]a_n[/tex])

1                     7

2                     10

3                     13

4                     16

5                     19

6                     22

from the given table:

At n = 1 ,

[tex]a_1 = 7[/tex]

At n = 2

[tex]a_2 = 10[/tex]

at n = 3

[tex]a_3 = 13[/tex] and so on

Common difference(d) for the sequence is  3

Since,

[tex]d = a_2-a_1=a_3-a_2.....[/tex]

⇒[tex]d = 10-7=13-10......... = 3[/tex]

Substitute d = 3 and [tex]a_1 = 7[/tex] in [1] we have;

[tex]a_n = 7+(n-1)(3)[/tex]

⇒[tex]a_n = 7+3n-3[/tex]

⇒[tex]a_n =3n+4[/tex]

Therefore, the expression gives the number in the nth position in the sequence is, [tex]3n+4[/tex]