Respuesta :

It depends if you mean [tex] \sqrt{8x} +1=5[/tex] or [tex] \sqrt{8x+1} = 5 [/tex] 

[tex] \sqrt{8x} +1=5[/tex]

Subtract 1 from both sides. 

[tex] \sqrt{8x} =4[/tex]

Take the square root of both sides. 

8x = sqrt(4) 
8x = 2
x = 1/4.

Plugging it back in: 
sqrt(8*0.25) + 1 = 5 
sqrt(2) = 4

This is not true because the square root of 2 is about 1.41, which does not equal 4. 
So it is an extraneous solution.
__________________________________________
[tex] \sqrt{8x+1} = 5 [/tex] 
Square both sides. 
8x + 1 = 25 
8x = 24
x = 3

Not extraneous because equation works out when you plug x back in.