Respuesta :

y=3/7(2)+5
y= 6/7+5
y= 6/7+ 35/7
y= 41/7

Answer:

The coordinate of (2,y) is 5.85 such that the given point lies on line  [tex]y=\frac{3}{7}x+5[/tex].

Step-by-step explanation:

Given :  Equation of line [tex]y=\frac{3}{7}x+5[/tex]

We have to find the value of y coordinate of point (2,y) such that  the given point lies on line  [tex]y=\frac{3}{7}x+5[/tex].

Since, the point lies on the  line [tex]y=\frac{3}{7}x+5[/tex]

So (2,y) satisfies the equation of line [tex]y=\frac{3}{7}x+5[/tex]

Put x = 2 and y = y, we have,

[tex]y=\frac{3}{7}(2)+5[/tex]

[tex]y=\frac{6}{7}+5[/tex]

Take LCM, we have

LCM (7,1) = 7

[tex]y=\frac{6+35}{7}[/tex]

⇒  [tex]y=\frac{41}{7}=5.85[/tex]

Thus, The coordinate of (2,y) is 5.85 such that the given point lies on line  [tex]y=\frac{3}{7}x+5[/tex].