contestada

A particular circle in the standard (x,y) coordinate
plane has an equation of (x − 5)2 + y2 = 38. What are
the radius of the circle, in coordinate units, and the
coordinates of the center of the circle?

Respuesta :

For any circle with Cartesian equation
[tex](x-a)^2 + (y-b)^2 = r^2[/tex],
we have that the centre of the circle is [tex](a,b)[/tex], and the radius of the circle is [tex]r[/tex].

So in the case that 
[tex](x-5)^2 + y^2 = 38[/tex],
we essentially have that
[tex]a = 5, b = 0, r^2 = 38[/tex].

So the centre of the circle is [tex](5,0)[/tex], and the radius is [tex]\sqrt{38}[/tex].