Answer:
Elevation of helicopter (h) is [tex]10\frac{3}{4}[/tex] meters.
Step-by-step explanation:
Let h be elevation of helicopter and s be elevation of submarine in meters.
Upon using our given information we can write an equation to find elevation of helicopter as:
[tex]h-s=18\frac{1}{2} =\frac{37}{2}[/tex]
We are given that [tex]s=-7\frac{3}{4} =-\frac{31}{4}[/tex]
Upon substituting value of s in our equation we will get,
[tex]h--\frac{31}{4} =\frac{37}{2} [/tex]
[tex]h+\frac{31}{4} =\frac{37}{2} [/tex]
[tex]h =\frac{37}{2}-\frac{31}{4} [/tex]
[tex]h =\frac{74-31}{4} [/tex]
[tex]h =\frac{43}{4} [/tex]
[tex]h=10\frac{3}{4}[/tex]
Therefore, the elevation h of the helicopter will be [tex]10\frac{3}{4}[/tex] meters.