Respuesta :

ANSWER

[tex]x=\frac{13}{62}[/tex]

and


[tex]y= \frac{-9}{62}[/tex]e have



EXPLANATION




[tex]17x-3y=4---(1)[/tex]


[tex]2x-4y=1[/tex]



Let us make y the subject and call it equation (2)


[tex]2x=1+4y[/tex]


[tex]x=\frac{1}{2}+2y--(2)[/tex]



We put equation (2) in to equation (1)




[tex]17(\frac{1}{2}+2y)-3y=4[/tex]


[tex]\frac{17}{2}+34y-3y=4[/tex]



[tex]34y-3y=4- \frac{17}{2} [/tex]


Simplify to get,



[tex]31y= \frac{8-17}{2} [/tex]



[tex]31y= \frac{-9}{2} [/tex]


Divide both sides by 31,



[tex]y= \frac{-9}{2} \div 31[/tex]



[tex]y= \frac{-9}{2} \times \frac{1}{31}[/tex]




[tex]y= \frac{-9}{62}[/tex]


We put this value in to equation (2) to get,



[tex]x=\frac{1}{2}+2\times -\frac{9}{62}[/tex]




[tex]x=\frac{1}{2} -\frac{18}{62}[/tex]


We collect LCM to obtain,



[tex]x=\frac{31-18}{62}[/tex]



[tex]x=\frac{13}{62}[/tex]