Respuesta :

ANSWER

The solution is

[tex](x=1,y=2),(x=2,y=3)[/tex]


EXPLANATION

We have

[tex]y=x+1---(1)[/tex]

and


[tex]y=x^2-1---(2)[/tex]


Let us substitute equation (1) in to equation (2). This gives us,

[tex]x+1=x^2-1(2)[/tex]

We rewrite this as a quadratic equation as the highest degree is 2.

[tex]x^2-x-1-1=0[/tex]

This implies that


[tex]x^2-x-2=0[/tex]


we factor to obtain,


[tex]x^2+x-2x-2=0[/tex]


[tex]x(x-1)-2(x-1)=0[/tex]


[tex](x-1)(x-2)=0[/tex]


This means,

[tex](x-1)=0\:\: or\:\:(x-2)=0[/tex]

[tex]x=1\:\: or\:\:x=2[/tex]


We substitute this values into any of the above equations, preferably equation (1)


When, [tex]x=1[/tex], [tex]y=1+1=2[/tex]


When, [tex]x=2[/tex], [tex]y=2+1=3[/tex]


The solution is

[tex](1,2),(2,3)[/tex]