Consider two functions: g(x)=−x2−6x and the quadratic function ​f(x)​ shown in the table.

Which statements are true?

Select each correct answer.

Consider two functions gxx26x and the quadratic function fx shown in the table Which statements are true Select each correct answer class=

Respuesta :

Answer:

1) The third option.

2) The last option.


Step-by-step explanation:

1) f(x) is greater on the interval (0,3), which is opened, because if  you substitute [tex]x=2[/tex] you obtain the following result

[tex]f(2)=4\\g(2)=(2)^{2}-6(2)=-8[/tex]

3) If [tex]x=3[/tex], you obtain that:

[tex]g(3)=-9\\f(3)=9[/tex]

Therefore: [tex]f(3)>g(3)[/tex]

Answer : a, c, d

[tex]g(x)= -x^2-6x[/tex]

x            f(x)                  g(x)

-3           9                     -27

-2            4                     -16

-1             1                    -7

0              0                     0

-3            9                     -27

-2            4                     -16

-1             1                    -7

(a) On the interval [0,3] f(x) is increasing  and g(x) is decreasing. So rate of change of f(x) is greater than rage of change of g(x)

(b) f(x) and g(x) has same y intercept 0. so part b is not true

(c) f(x) is positive on the interval [0,3] . so f(x) is greater than g(x)

(d) g(3) = -27  and f(3) = 9. so g(3) is less than f(3)