The constraints of a problem are listed below. What are the vertices of the feasible region?

x+3y≤6
4x+6y≥9
x0
y0

A) (-3/2,5/2), (9/4,0), (6,0)
B) (0,0), (0,3/2), (9/4,0)
C) (0,0), (0,2), (6,0)
D) (0,3/2), (0,2), (6,0), (9/4,0)

Respuesta :

ANSWER

The correct answer is D

EXPLANATION

To graph the inequality

[tex]x+3y\le 6[/tex]


we first graph the corresponding equation,

[tex]x+3y= 6[/tex]

We then test the origin to determine which half-plane to shade the inequality,

[tex]0+3(0)\le 6[/tex]


[tex]0\le 6[/tex]

The above statement is true so we shade the lower half plane.


Next, we graph

[tex]4x+6y\ge 9[/tex]

By first graphing the corresponding equation,

[tex]4x+6y=9[/tex]


Then we test the origin again,

[tex]4(0)+6(0)\ge 9[/tex]

[tex]0\ge 9[/tex]


This statement is false, so we shade the upper half plane


Next, we graph,

[tex]x\ge 0[/tex]

Draw the vertical line [tex]x=0[/tex] and shade to the right.


Finally, we graph,

[tex]y\ge 0[/tex]

Draw the horizontal line [tex]y=0[/tex] and shade the upper region.


the intersection of all the shaded regions is called the feasible region.


The four vertices of the feasible region are

[tex](0,\frac{3}{2}),(0,2),(6,0),( \frac{9}{4},0)[/tex]


Hence the correct answer is D




Ver imagen kudzordzifrancis

Answer:

D)

Step-by-step explanation:

Source: Trust me bro