Respuesta :

Answer:

The correct option is:  -30

Step-by-step explanation:

According to the given graph, the the leftmost vertex of the feasibility region is the intersecting point of lines [tex]y=0[/tex] and [tex]y= 3x+2[/tex]

Now, solving the above two equations, we will get.......

[tex]0=3x+2\\ \\ 3x=-2\\ \\ x=-\frac{2}{3}[/tex]

So, the co ordinate of the leftmost vertex will be:  [tex](-\frac{2}{3},0)[/tex]

From the given graph, the other vertices are:  [tex](8,0), (8,2)[/tex] and [tex](2,8)[/tex]

Given objective function is:  [tex]P= x-4y[/tex]

Now, we need to find the value of that objective function at each vertex. So....

For [tex](-\frac{2}{3},0)[/tex] ,  [tex]P= -\frac{2}{3}-4(0)=- \frac{2}{3} \approx -0.67[/tex]

For [tex](8,0)[/tex] ,   [tex]P=8-4(0)=8[/tex]

For [tex](8,2)[/tex] ,   [tex]P=8-4(2)=8-8=0[/tex]

For [tex](2,8)[/tex] ,   [tex]P=2-4(8)=2-32=-30[/tex]  (Minimum)

Thus, the minimum value of the objective function will be -30.