Respuesta :
the vertex of the quadratic function
[tex]f(x)= \frac{1}{2}x^2+3x+\frac{3}{2}[/tex]
To find vertex we use formula x= -b/2a
from the given equation , a= 1/2 and b = 3
Now we plug in the values in the formula
[tex]x = \frac{-b}{2a}[/tex]
[tex]x= \frac{-3}{2\frac{1}{2}}=-3[/tex]
x coordinate of vertex is -3
Now plug in -3 for x in f(x)
[tex]f(-3)= \frac{1}{2}(-3)^2+3(-3)+\frac{3}{2}[/tex]
f(-3) = -3
the y coordinate of vertex is -3
So vertex is (-3,-3)
Answer:
(-3, -3)
Step-by-step explanation:
The standard form of a quadratic equation is [tex]y = ax^2+bx+c[/tex] where the coordinates of the highest point (x, y) indicate the vertex.
Here, [tex]a= \frac{1}{2} , b = 3[/tex] and [tex]c= \frac{3}{2}[/tex].
We know the formula to find the x coordinate = [tex]\frac{-b}{2a}[/tex]
[tex]x= \frac{-3}{2(\frac{1}{2}) }[/tex] = [tex]-3[/tex]
To find y, put this value of x in the function to get:
[tex]y = \frac{1}{2} x^2+3x+\frac{3}{2}[/tex]
[tex]y = \frac{1}{2} (-3)^2+3(-3)+\frac{3}{2}[/tex]
[tex]y = -3[/tex]
Therefore, the vertex (x, y) = (-3, -3)