PLeasE please help me!

Enter the simplified form of the complex fraction in the box.

Assume no denominator equals zero.

i got x + 15 / 8(x - 1) is that right?

PLeasE please help me Enter the simplified form of the complex fraction in the box Assume no denominator equals zero i got x 15 8x 1 is that right class=

Respuesta :

No. But good try. You almost got it.
Here is the answer:
[tex] \frac{ \frac{2}{x - 1} + \frac{1}{x} }{ \frac{8}{x} } \\ = \frac{ \frac{2x+ x - 1}{x(x - 1)} }{ \frac{8}{x} } \\ = \frac{ \frac{3x - 1}{x(x - 1)} }{ \frac{8}{x} } \\ = \frac{ \frac{3x - 1}{x(x - 1)} \times x } {8} \\ = \frac{ \frac{ 3x - 1}{x - 1} }{8} \\ = \frac{3x - 1}{8(x - 1)} \\ = \frac{3x - 1}{8x - 8} [/tex]

The simplified form of the complex fraction is

[tex] = \frac{3x² - x }{8x² - 8} [/tex]

Given:

[tex] = \frac{ \frac{2}{x - 1} + \frac{1}{x} }{ \frac{8}{x} } [/tex]

[tex] = \frac{ \frac{2(x) + (x - 1)}{(x - 1)(x)} }{ \frac{8}{x} } [/tex]

[tex] = \frac{ \frac{2x + x - 1}{x² - x} }{ \frac{8}{x} } [/tex]

[tex] = \frac{ 3x - 1}{x² - x} \div \frac{8}{x} [/tex]

[tex] = \frac{ 3x - 1}{x² - x} \times \frac{x}{8} [/tex]

[tex] = \frac{x(3x - 1)}{8(x² - x)} [/tex]

[tex] = \frac{3x² - x }{8x² - 8} [/tex]

Therefore, the simplified form of the complex fraction is

[tex] = \frac{3x² - x }{8x² - 8} [/tex]

Read more:

https://brainly.com/question/1280754