Respuesta :

Answer:

x≈4

Step-by-step explanation:

We are given that

[tex]2^{x} \times 3^{x}=1296[/tex]

And we are asked to solve it for x

In order to do that we will use the properties of logarithm

Taking log on both hand sides

[tex]\log(2^{x} \times 3^{x})=\log 1296[/tex] ----------------(A)

We know that

[tex]\log (a\times b)=\log a + \log b[/tex]

Hence applying this law in (A)

[tex]\log(2^{x} \times 3^{x})=\log 2^{x} + \log 3^{x}[/tex]

[tex]\log 2^{x} + \log 3^{x} =\log 1296[/tex] --------------(B)

Another property of logarithm says

[tex]\log a^{m} = m\log a[/tex]

Applying this law in (B)

[tex]x\log 2 + x\log 3 = \log 1296[/tex]

taking x as GCF

[tex]x(\log 2 + \log 3)=\log 1296[/tex]

[tex]x \log (2\times 3)=\log 1296[/tex]

[tex]x \log 6= \log 1296[/tex]

Dividing both sides by \log 6[/tex]

[tex]x=\frac{\log 1296}{\log 6}[/tex]

using calculator

log 1296 = 3.1126

log 6 = 0.7781

[tex]x=\frac{3.1126}{0.7781}[/tex]

x≈4